Accelerated barrier optimization compressed sensing (ABOCS) for CT reconstruction with improved convergence.

نویسندگان

  • Tianye Niu
  • Xiaojing Ye
  • Quentin Fruhauf
  • Michael Petrongolo
  • Lei Zhu
چکیده

Recently, we proposed a new algorithm of accelerated barrier optimization compressed sensing (ABOCS) for iterative CT reconstruction. The previous implementation of ABOCS uses gradient projection (GP) with a Barzilai-Borwein (BB) step-size selection scheme (GP-BB) to search for the optimal solution. The algorithm does not converge stably due to its non-monotonic behavior. In this paper, we further improve the convergence of ABOCS using the unknown-parameter Nesterov (UPN) method and investigate the ABOCS reconstruction performance on clinical patient data. Comparison studies are carried out on reconstructions of computer simulation, a physical phantom and a head-and-neck patient. In all of these studies, the ABOCS results using UPN show more stable and faster convergence than those of the GP-BB method and a state-of-the-art Bregman-type method. As shown in the simulation study of the Shepp-Logan phantom, UPN achieves the same image quality as those of GP-BB and the Bregman-type methods, but reduces the iteration numbers by up to 50% and 90%, respectively. In the Catphan©600 phantom study, a high-quality image with relative reconstruction error (RRE) less than 3% compared to the full-view result is obtained using UPN with 17% projections (60 views). In the conventional filtered-backprojection reconstruction, the corresponding RRE is more than 15% on the same projection data. The superior performance of ABOCS with the UPN implementation is further demonstrated on the head-and-neck patient. Using 25% projections (91 views), the proposed method reduces the RRE from 21% as in the filtered backprojection (FBP) results to 7.3%. In conclusion, we propose UPN for ABOCS implementation. As compared to GP-BB and the Bregman-type methods, the new method significantly improves the convergence with higher stability and fewer iterations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Denoising Message Passing for X-ray Computed Tomography Reconstruction

X-ray Computed Tomography (CT) reconstruction from sparse number of views is becoming a powerful way to reduce either the radiation dose or the acquisition time in CT systems but still requires a huge computational time. This paper introduces an approximate Bayesian inference framework for CT reconstruction based on a family of denoising approximate message passing (DCT-AMP) algorithms able to ...

متن کامل

BPConvNet for compressed sensing recovery in bioimaging

Iterative reconstruction methods have become the standard approach to solving inverse problems in imaging including denoising [1], [2], [3], deconvolution [4], and interpolation [5]. With the appearance of compressed sensing [6], our theoretical understanding of these approaches evolved further with remarkable outcomes [7], [8]. These advances have been particularly influential in the field of ...

متن کامل

Improved Iterative Curvelet Thresholding for Compressed Sensing

A new theory named compressed sensing for simultaneous sampling and compression of signals has been becoming popular in the communities of signal processing, imaging and applied mathematics. In this paper, we present improved/accelerated iterative curvelet thresholding methods for compressed sensing reconstruction in the fields of remote sensing. Some recent strategies including Bioucas-Dias an...

متن کامل

The Convergence of Two Algorithms for Compressed Sensing Based Tomography

The constrained total variation minimization has been developed successfully for image reconstruction in computed tomography. In this paper, the block component averaging and diagonally-relaxed orthogonal projection methods are proposed to incorporate with the total variation minimization in the compressed sensing framework. The convergence of the algorithms under a certain condition is derived...

متن کامل

Accelerated Compressed Sensing Based CT Image Reconstruction

In X-ray computed tomography (CT) an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS) enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 59 7  شماره 

صفحات  -

تاریخ انتشار 2013